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ABSTRACT

Traditionally, the errors-in-variables problem is concerned

with the point estimation of the slope of the true scores

regression line when the regressor is measu-ed with error, and

when no specification error is present. In this paper the

errors-in-variables problem is extended to also include

specification error. As is well known, least squares procedures

provide a biased estimator of the slope of the true scores

regression line. Further, it is well known the maximum

likelihood estimates of the slope (which are consistent) exist

only once some assumptions are made. In this paper maximum

likelihood estimates are given for the extended version of the

errors-in-variables problem (i.e., when specification error is

present) under the usual assumptions and under several new

assumptions which are more appropriate for the social and

behavioral sciences than the previously used assumptions. A

simulation study is then described. The results of the

simulation study show that the maximum likelihood estimates (both

under the old and new assumptions) far outperform the least

squares procedures when several different criteria (such as bias

and standard error) are used.



REGRESSION SLOPE ESTIMATION WHEN BOTH
MEASUREMENT AND SPECIFICATION ERROR ARE PRESENT

One of the problems which has been of great interest over

the years to econometricians and others is known as the errors-

in-variables problem. Some of the more complete discussions of

early work on this problem are M. Brown (1982), Johnston (1972),

Kendell & Stuart (1973), Madansky (1959) and Moran (1971).

Recently Fuller (1987) has published a volume devoted solely to

the errors-in-variable problem that includes the newer, as well

as the older, work on this problem. The main purposes of this

paper are to present maximum likelihood solutions to the errors-

in-variables problem for some situations that have not been

investigated by others and to report on a simulation study in

which these new methods were studeted. For completeness, the

maximum likelihood solutions presented in the past literature

will also be given.

Definition of the Problem

For ease of discussion, some notation will be introduced

presently.LetX.and Y
i
represent two observed variables of

interestforindividualiLetX.and Y.
*

represent the values

of X. and Y. if they were measured without error (i.e., the

true scores or latent scores). Let ex and ey represent the

errors of measurement (i.e., the difference between the true
*

and observed values) in X and Y, respectively. Let a and S.

*
represent the Y -intercept and slope, respectively, of the

Y on X regression line. BaSically the errors-in-variables problem

*
is concerned with the point estimation of the slope (and Y -intercept)
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*
of the Y on X regression line. Most often discussions of

the errors-in-variables problem assume that there exists a
* *correlation of +1 or -1 between X and Y (M. Brown, 1982;

DeGracie & Fuller, 1972; Fuller & Hidiroglou, 1978; Johnson,

1972; Kendall & Stuart, 1973; Madansky, 1959; Moran, 1971;

Sprent, 1966; Wald, 1940; Lindley, 1953 and others). That ::.s;

most discussions assume that there is no specification error
*present in the statement of the relationship between X and

*
Y . The assumption of no specification error is, however,

very unrealistic for most, if not all educational, psycho-

logical, and other behavioral science applications. Further,

the assumption of no specification error is necessry. Hence,

the definition of the errors-in-variables problem will be

extended in this paper to include specification error. A

fairly thourough search of the literature revealed few sources

where specification errors were considered. The only sources

found were Cochran (1968) and Rock, Werts, Linn, and JOreskog

(1977). Neither Cochran nor Rock, et. al., however, discuss

explicit solutions to the errors-in-variables problem when

specification error is added. Cochran only talks about the

errors-in-variables problem in relationship to ANCOVA and

Rock et. al. only talk in general terms about how, once enough

identifying or overidentifying restrictions are made, LISREL

(Joreskog & SOrbom, 1981) can be used to obtain the values of

the desired maximum likelihood estimates.
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The errors-in-variables problem can then be expressed

symbolically as follows:

and

*
Find a consistent point estimator of 8 when

w * * *
Y. = a + $ X. + e

s.1 1
1

*
Xi = Xi + e

X.
i

*
Yi = Yi + e

Y.
1

,

,

I

where e
s.

is the specification error for individual i.
1

* *
Further, it is assumed that the vector (X ,Y ,evey,es) has

a multivariate normal distribution with mean vector (p ,
'

p 0,0,0)

and with a variance-covariance matrix all of whose off-diagonal

elements (i.e., the covariances) except ax*y* (the covariance

* *
of X and Y ) are zero and .Those diagonal elements (i.e., the

variances)are in order symbolized by 4*, 4*, 0:
X

, 0:
Y

, ar
e

d 0 2

s

Background

There are many educational and other behavioral science

situations in which the estimation of 0* is desirable. The

author perused several recent years of American Educational

Research Journal and of Journal of Educational Research. Many
examples were encountered where the authors estimated 0* for a

variety of variables, X and Y. All, however, used the least

squares estimator of 0*.

The usual least squares estimate of 6, the slope of the

Y on X regression line when X is measured without error, is

given by 0
LS = SXY , where S and S 2

are the sample covariance ofXY X2
S
X

6
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X and Y and the variance of Y, respectively. it is well known

that
LS is not a consistent estimator of 0 , since E(SLS ) =

p
XX -0

*
(Berkson, 1950; Johnston, 1972; Lindley, 1947; and

others). Hence, it has been suggested that maximum likelihood

estimation or other techniques be used instead. In order to

compute the maximum likelihood estimates of a and 0, it is

necessary to get expressions for the population means, variances,
*

and covariances of the observed variables in terms of 0 :Arid

other parameters of interest. Hence

and

PX=PX ;

* *
py = a + 0'px , from equation (1) ;

a = a *
4- a

2
, from equation (2) ;X X e

X

*
a = (0 V.(32 n

2
* + + a 2Y ' X "e e

sY

from equations (1) and (3);

XY
= 0 .a2X *

where (In is the population covariance of X and Y.

Equation (8) can be derived as follows:

a
XY = Cov(X,Y)

= Cov(X + e
X'

Y + e )

(8)

[from equations (2) and (3B

* *
= Cov(X ,Y ) + Cov(X ,e1) + Cov(ex,Y ) + Cov(ex,ey) .

7
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Next, by assumption, Cov(X ey), Cov(ex
,Y

*
I ), and Cov(e

X
,e

Y
)

* *
are all zero. Hence 0

XY = Cov(X ,Y ). Therefore,

* *
a
XY = Cov(X ,Y )

* * * *
= Cov(X ,a + 6 .X + es) from equation (1)

= Cov(X
*
,a

*
) + Cov(X*,8

*
*X

*
) + Cov(X ,e

s
)

* *
= 6 Cov(X ,X )

* * *
since Cov(X ,es) is zero by assumption and since Cov(X ,a ) = 0,

* 2because a
*

is a constant. Consequently, a
XY

= 6.0X* .

Equations (6) and (7) are derived similarly.

As is widely known (e.g. Kendall & Stuart, 1973; Mood,

Graybill, & Boes, 1974), the maximum likelihood estimates of

Y"X' "Y' and 0
NY are given by R, Y, S , S , and SXY /

, 2

respectively, when it is assumed that the joint distribution

of X and Y is multivariate normal. Theoretically, the maximum
* *

likelihood estimates of the unknown parameters (i.e., a rOrPxr

0.2*

e
, and 02 ) on the right hand side of the system ofu-2

eX r
X Y

equations (4) to (8) are then computed by solving the system

for these unknown parameters in terms of the maximum likelihood

estimates of p , p , u2
' Y
u2 , and a

XY
(Mood, Graybill, & Boes,

X

1974). But, since there are only five equations in six un-

knowns, an infinite number of solutions exist. The presence

of an infinite number of solutions is not, however, of
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practical use. Hence, it is necessary to make additional

assumptions so that an infinity of solutions do not exist.

Previous Solutions

Some assumptions that have been made in the past litera-

ture are:

Assumption A: a2 is known and 02
e

= 0 ;eX

Assumption B: a2 is known and a2 = 0 ;e
s

a 2*

Assumption C: The ratio -
e

-T-- is known and 02 = 0 ;

e
X s

and
a 2

e
Assumption D: The ratio Q is known and a2

e
= 0 .

e
X s

Assumption C is equivalent to assuming that the reliability

of X is known. The reliability of a measure, say X, is defined

as the ratio of true score variance to observed score variance

and is denoted by p
XX' To see the equivalence of Assumption C

a2* a 2*
Xand p

XX being known, let k = . Then p
XX

az
eX 2a

X

a 2*
X

, by dividing the numerator and denomi-a2* a2 k+ 1
X

nator by 02 . The maximum likelihood estimates of a undereX

9
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Assumptions A, B, C, and D are:

Under Assumption A, 0 XY

S 2 - a 2

X

2

^*
Sy a

e
2

Under Assumption B, 0 =

Under Assumption C, 0 =

(Johnston, 1972).

X

SXY

(Kendall & Stuart, 1973). (9)

(Kendall & Stuart, 1973) .

(k + 1)Sx,
XY 1 .a (10)

k-S
X p

XX
-S
X

PXX LS

S A.'S 2 +VI (S2 - kS2) 2
+ 4X-(S )2Under Assumption D, a X Y X XY

2- Sxy

(Kendall & Stuart, 1972). Under all rf these assumptions and

^under the new assumptions to be discussed later, a = Y 0 X .

For Assumption A, when an estimate of a2 is available insteadeX

of a2 being known, DeGracie and Fuller (1972) have derived ae
X

consistent non-maximum likelihood estimator of B .

Interestingly, the assumption that (3,2, = 0 is not needed
's

*in order to obtain the maximum likelihood estimates of 0 when

either 02
e

is known (i.e., Assumption A) or when p
XX

is known
X

(i.e., Assumption C). The reason is that if one sets the value

10
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of a2
e equal to some arbitrary constant the maximum likelihood
s

*
estimates of R can still be calculated in both these cases,

since setting a2 equal to some arbitrary value allows thees

system of equations (4) to (8) to be solved for . Further,

no matter what this arbitrary value of ae is, the maximum

*
likelihood estimate of S is the same as in equation (9)

[when (12 is known] or as in equation (10) [when p
XX is known].e

X

Since these estimates do not change as a: changes, the max-

imum likelihood estimates in these two cases when a2 is
e
s

unknown are still given by equation (9) and equation (10).

New Solutions

Before giving the maximum likelihood solutions to the

errors-in-variables problem under situations which have not

been discussed in the past literature, a listing of the

possible assumptions that can made concerning the parameters

a2 , az 02
,

and a2* will be given. These possiblee
X e

s X

assumptions are:

Assumption 1: a2 is known ,eX

Assumption 2: a2 is known ,ey

a 2*

Assumption 3: The ratio X is known (i.e., pxx is known),
,12

-e
X

Ii
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0 2

e
Assumption 4: The ratio Y is known ,

a2
eX

Assumption 5: 02
e

is known ,

s

Assumption 6: a 2 + al is known ,e
s

e
Y

02 + a2

Assumption 7: The ratio
e
s

e
Y

0 2

e
Assumption 8: The ratio s

0 2

e
X

a2
e
Y

a
2

e
Assumption 9: The ratio s is known,

a
2

is known ,

is known,

e
X

Assumption 10: 02X * is known,

0 2

Assumption 12: a is known (i.e., the ratio Y
YY

a 2and
e
YAssumption 11:

PXX PYY

_t is realized that some of these assumptions are more

plausible than others. The relative plausibility of the various

assumptions will differ across data analysis situations. It

is interesting to note that all of the assumptions except

Assumption li actually require knowledge on the part of the

d., '-'telllyst. Assumption 11, however, only rewlires believa-
.

ven though Assumptions 1 t' 10, & 12are stated in

is known),

is known, it is realized that in actual

12
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data analysis situations the analysts will be providing their

best guess at the correct value of a particular quantity rather

than knowing the correct value. In the remainder of this

paper it will be assumed nevertheless that the correct values

of particular quantities al.:e known rather than guessed at.

The solutions under Assumption 1 or under Assumption 3

have already been discussed when it was shown that the a: = 0

part of Assumptions A and C is not necessary. Solutions can

also be derived when either Assumption 6, 7, or 10 is used.

When any of the remaining assumptions (i.e., Assumptions 2,

4, 5, 8, 9, 11, or 12) is taken singly, an infinite number of

solutions for a, in terms of a2 a2
,

a
XY

, and the particularY

assumption taken, still exist. Hence, maximum likelihood

estimates of a are not available when any of the Assumptions

2, 4, 5, 8, 9, 11, or 12 is taken singly. Solutions can be

derived, however, when any combination of two of these assump-

tions, except 4 and 11 or 2 and 12, is jointly assumed.

When Assumptions 4 and 11 or Assumptions 2 and 12 are jointly
*

assumed an infinite number of solutions for a still exist,

and hence maximum likelihood estimates still do not exist.

Only elementary algebra is necessary to derive the maximum

likelihood estimates, even though in some cases the derivations

are quite tedious. Hence the author has chosen in this paper to

give only the maximum likelihood estimates and eliminate the

derivations of these estimates.

3.3



Table 1 gives these maximum likelihood estimates of A, under

the various assumptions. In this table when more than one set of

assumptions are listed together in the first column (e.g.,

3 alone; 11 and 12 jointly), this means that each of these sets

of assumptions generates the same solution for e. When two or

more expressions for A are given together in the second column

and are connected by a ; , this means that these expressions are

two different "computational" formulae for the same estimator.

Insert Table 1 about here

Set-Up of Simulation Study

A simulation study was performed that involved 1000 data

sets at each of three levels of data reliability crossed with

three levels of sample sizes. This simulation study is only a

first step in the comparison of the various estimators proposed

in the last section. As will be discussed later, more remains to

be done. In order to be able to compare the properties of the

various estimators, the generated data sets simultaneously met

the Assumptions 1 through 12. For all data sets, without loss of

generality, d2
X

was set to 1, and then a
e

2
was set to 1/4.

Since, as was stated earlier, no previous work is known to the

2
author where specification error was included, the choice of a

es

as being equal to 1/4 of a2* was made because even in those

social and behavioral science situations where errors of

measurement are negligible, and where a linear relationship makes

theoretical sense, the r 's seem to often be around .75,
XY



-12-

leaving approximately one-quarter of the variance being due to

specification error. For this simulation study the values of a'=

O. Makinc, a
*

= 0 was done in order to be able to focus on the

* *
estimation of 3 . Arbitrarily, 3 was set equal to 1.5 . This

simulation study needs, however, be repeated in the future with

2
different values of 3 . Once 3

*
is set equal to 1.5 and aX* = 1,

it follows that a
2
* = 2.25 .

The three levels of data reliability chosen for this study

were .5, .7, and .9 . In order to be able to compare across the

various assumptions, each reliability value represents the common

value of and pyy . Once the reliability value is chosen the

remainder of simulation population values can be explicitly

determined since they are functions of 3 , ci2x* , P
XX

, and Pyy

These values are:

Parameter

2
a
e
X

2
a

Value when
P = .5

1

Value when
P = .7

Value when
P = .9

3/7 1/9

9/4 27/28 1/4

The sample sizes chosen for this study were 25, 50, and 100,

since these are typical sample sizes in the social and behavioral

sciences.

The first stage of the simulation study was to generate

pseudo-random standard normal deviates. The second stage of the

simulation involved estimating the Estimators 1 through 15 and

the usual least squares estimator for 1000 data sets based on

pairs of observations, X and Y, that were generated using the

pseudo-random deviates generated at the first stage. For each
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pair of observations, X and Y, (i.e., simulated individuals) four

standard normal deviates were needed. The first deviate

represented X. The second and third deviates were multiplied by

the appropriate values to give ( and e
Y

. The fourth deviate
4,

was multiplied by .25 to give es. Each deviate was generated

separately by entering four different seeds simultaneously into

the RANNOR pseudo-random standard normal generator in SAS Version

5.1 as implemented on the VAX computer at Winona State University

running under the VMS operating system. Due to internal

limitations on VAX at Winona State, only 6250 individuals'

deviates could be generated per SAS run. Four new seeds were

entered for each of the 16 runs used to generate the 400,000

deviates needed in this study (1000 simulation runs x 100

individuals x 4 deviates per individual). The RANNOR generator

in SAS worked well. The means for the 64 sets of 6250 pseudo-

standard normal deviates ranged from a low of -.03833002 to a

high of +.01904790 while the standard deviations ranged from a

low of .98150919 to a high of 1.01668405 . The pairwise

correlations between the four deviates within a run ranged from a

low of -.02693 to a high of +.03227 .

Results

For the reliability values of .5 and .7 all of the maximum

likelihood estimators studied did better than the usual least

squares estimator, while for the reliability value of .9 the

maximum likelihood estimators did better in almost all cases.

Tables 3 through 11 provide summaries of the simulation results

16
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for the various reliability values and sample sizes. Table 2

provides the key to the estimator numbers used in Tables 3

through 11. In each table the last column represents the

Insert Tables 2 through 11 about here

percentage of times that the estimator being studied is closer to

the correct theoretical value of 1.5 for f3* than the usual least

squares estimator is. Although this is not a traditional method

for comparing estimators, it was felt by the author that this

column gives extremely valuable information in this situation.

The column labeled "Mean" in each of Tables 3 to 11 provides the

observed means for each estimator rather than the theoretical

values, even though the theoretical values can easily be derived.

It should be noted that the theoretical values were calculated by

the author and the observed values for the mean were indeed close

to the theoretical values. The reason, however, that a

simulation study was done was to obtain estimates of the standard

errors of the various estimators and to assess the percentage of

times each estimator outperformed the usual least squares

estimator. Since observed standard errors and percentages are

reported in the tables, the observed means are reported simply

for consistency purposes.

The first thing that should be noticed from Tables 3 to 11

is, as would be expected, that as the sample sizes increase

within a reliability value all of the estimators, with only a few

exceptions, have decreasing standard errors, less bias (i.e., the

observed means become closer to the theoretical value of 1.5),

17
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and hence increased percentages of times better than least

squares estimator. Estimators 10, 12, and 13 for the reliability

of .5; Estimator 5 for the reliability value of .7; and Estimator

5 for the reliability value of .9 are the exceptions and they

are exceptions only for the bias of the mean. It should be

noticed, however, that these estimators have very little bias

already for samples of size 25. Hence, this nondecrease in the

values for the means could be caused simply by nested sets of

random numbers being used for the simulations at the different

sample sizes (i.e., the 100,000 random deviates used for n = 25

are a subset of the 200,000 random deviates used for n = 50,

which in turn are a subset of the 400,000 deviates used for n =

100.)

The second thing to notice is that within a sample size

(i.e., n = 25, n = 50, or n = 100) in all cases the percentage of

times that an estimator does better than the usual least squares

estimator decreases as the reliability of the data increases.

This is not all that surprising when one remembers that the bias

in the least squares estimator of A* is heavily dependent on the

reliability of the data. That is, the bias of the least squares

estimator is equal to
(PXX

- 1)A* and hence the bias increases

as the reliability of the data decreases. Further, as would be

expected, within a sample size almost always the bias and the

standard errors of the various estimators decrease as the

reliability increases. The exceptions are the bias for

Estimators 10, 12, and 13 for the sample sizes of n = 25 and 50

and Estimators 2, 3, 10, 12, and 13 when n = 100.

8
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Conclusions

A final thing to notice across the estimators is that all of

the estimators except Estimators 3, 5, and 9 have similar

standard deviations and percentage of times better than the usual

least squares estimator for a fixed sample size and reliability

level (except in the case when n = 25 and the reliability value

is .5). Hence, when several of the assumptions made in

generating the various estimators seem reasonable simultaneously

in a particular real-world setting, this simulation study does

not give very much advice for choosing between the various

estimators. What can be concluded, however, is that if a variety

of assumptions fit the real-world setting, then the researcher

should avoid using Estimators 3, 5, and 9. On the other hand,

and more importantly, all of the estimators presented here,

except Estimator 9, do much better than the usual least squares

estimator. Hence, as long as one of the sets of assumptions

(except those that lead to Estimator 9) presented in this paper

holds, the corresponding maximum likelihood estimators should be

used over the usual least squares estimator. As mentioned above,

the only estimator that performed badly was Estimator 9. The

author can not account for this. Perhaps there was an algebraic

error or a programming error on the author's part, but after

several checks by the author neither type of error was detected.

19
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Limitations and Future Directions

There are two major limitations to this study. First, only

one value of B *
was studied and only one value of a2 was used

es

when studying this value of the true scores regression line

slope. Hence, further simulation studies need to be performed

where the values of A and 02 are systematically varied.

Second, this study was performed using only data sets where all

of the assumptions were met simultaneously. A study needs to be

done where different assumptions are violated and the effects of

these violations are studied for the various estimators.

20
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Table 1

Maximum Likelihood Estimates of S*

Under Various Assumptions

Assumptions * -*
Maximum Likelihood Estmate of S (8 )

11

2

2

5

4

4

8

1

3

or

& 12 jointly

6

or

& 5 jointly

or

& 8 jointly

or

& 8 jointly

7

or

& 8 jointly

or

& 9 jointly

or

& 9 jointly

10

XY

S
XY

0 2*
X

S2 02
X e

X

S
XY c + 1

,

p .S2XX X

s2 102
Y eY

.

c

4. (12

" e '

Sl
where c =

0 2

e

XY

S2 q.S + /02
Y X

+
4n XY

2. Sxy

a 2 0e
s
+ e

Ywhere n=

XV

a 2

eX

2*
X

continued on next page
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Assumptions

2 & 4 jointly

2 & 9 jointly

2 & 11 jointly

-21--

Table 1 (continued)

Maximum Likelihood Estimate of s
*

(8 )

XY XY
2 2Sx 0e 0 2

S
X i

where A =

2ae

2

eX

S2 - Q2 6s2 + (S2 02 6q)2+ 46(Sxy)2Y e X Y ey

where 6 =

2a
ds

o2a
eX

2S
XY

'S S2
XY Y

S*(S2 02 )X Y eY

4 & 5 jointly

4 Z.:, 12 jointly

02 ,2 _102 4.1,04/fts2 132
1"e An{ 1 Y e As2)2+ Ws )2

XY

where A =

U2
25
XY

e

02

2

XY ey
where A =

Sz
X p

YY)52Y 0 2

5 & 9 jointly.
2

XY SXY
where 6 =

0
e

s2 02 ) s2
X

(12
X

e
e
X e

s X

continued on next page
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Assumptions
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Table 1 (continued)

Maximum Likelihood Estimate of 6
*

(8 )

e
s e

s

Y XY.

5 & 11 jointly

2- Sxy

5 & 12 jointly

A Q2 2
7-YY -Y es

XY

8 & 11 jointly

/ s2.(s )2
Y.

+ ,......2 .2 . 4. (1 +1) Y XYUr b) 't
,2
4.,{

where Y

9 & 11 jointly

a2
e
s

-2oe

2- Sxy

V/
--6-SXi 4. (6-S2)2+ 4-

Sz
X

+ 6 -IS )2XY

where cS =

a 2

e
s

a2ae
X

2- Sxy

continued on next page
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Assumptions

B & 12 jointly

-23-

Table 1 (continued)

^*Maximum Likelihood Estimates of i3
*

(8

2
Pyy Y'(Pyy 1)14 u

e
8where y -

XY 02

ev

9 & 12 jointly

p 2 s.sX 2 .t4) 2YY -Sy
YY -s

Y
6.c212, 46(s 12

XY)

a2e
where 6

2
e
X

2- Sxy

2 & 12 jointly

or

4 & 11 jointly
No maximum likelihood estimates exist

(not enough information)
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TABLE 2

Estimator

Correspondence Between Estimator Numbers and Assumptions

# Assumptions

1

2

3

4

5

1;

3;

6;

7;

10

2& 4 jointly; 5& 9 jointly

11 & 12 jointly

2& 5 jointly; 2& 8 jointly; 5& 8 jointly

4& 8 jointly; 4& 9 jointly; 8& 9 jointly

6 2 & 9 jointly

7 2 & 11 jointly

8 4 & 5 jointly

9 4 & 12 jointly

10 5 & 11 jointly

11 5 & 12 jointly

12 8 & 11 jointly

13 9 & 11 jointly

14 8 & 12 jointly

15 9 & 12 jointly
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TABLE 3

Maximum Likelihood Estimates
Using n = 25 and P = .5

Estimator
Number Mean Standard Error

Percentage of Times
Better Than Least Squares

Least Squares 0.78739 0.31837

1 2.32623 6.05184 63.4%

2 1.57478 0.63674 75.8%

3 1.73922 3.66971 58.3%

4 1.77828 2.35811 75.9%

5 1.51421 0.72259 75.4%

6 1.75161 3.40772 66.0%

7 2.02469 3.95133 70.3%

8 1.96543 1.84852 68.0%

9 * * *

10 1.51160 0.38382 88.5%

11 1.90996 2.69919 69.8%

12 1.51126 0.37071 88.7%

13 1.51479 0.40089 87.9%

14 1.94126 2.81998 69.21

15 1.86877 2.57002 76.1%

Note: The author made a formatting error when printing out the values of
Estimator 9 for the 1000 generazed data sets. This error was caused by the
estimator taking on values less than -9.999995 or greater than 99.999995 .

Hence, summary statistics are not reported here for Estimator 9.
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TABLE 4

Maximum Likelihood Estimates
Using n = 50 and p = .5

Estimator
Number Mean Standard Error

Percentage of Times
Better Than Least Squares

Least Squares 0.77055 0.21214

1 1.81852 1.91392 76.7%

2 1.54109 0.42427 86.8%

3 1.54068 0.75099 79.3%

4 1.59450 0.60344 86.6%

5 1.51537 0.50059 85.2%

6 1.55717 0.70521 84.9%

7 1.64410 0.48278 87.3%

8 1.79726 0.71365 79.4%

9 2.97829 4.88477 52.9%

10 1.51545 0.21600 96.0%

11 1.62225 0.67088 89.5%

12 1.51488 0.20835 96.4%

13 1.51639 0 23032 95.7%

14 1.63041 0.67880 89.0%

15 1.62036 0.621e4 92.0%
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TABLE 5

Maximum Likelihood Estimates
Using n = 100 and p = .5

Estimator
Number Mean Standard Error

Percentage of Times
Better Than Least Squares

Least Squares 0.75573 0.13974

1 1.61274 0.49832 88.4%

2 1.51146 0.27947 95.9%

3 1.51250 0.41903 93.2%

1.54117 0.31076 95.3%

5 1.49434 0.34833 94.5%

6 1.52162 0.38473 94.8%

7 1.56125 0.25456 96.9%

8 1.73606 0.35537 89.3%

9 2.68236 3.99031 58.0%

10 1.50831 0.14386 99.3%

11 1.55318 0.31720 97.4%

12 1.50822 0.13731 99.4%

13 1.50912 0.15131 99.3%

14 1.55724 0.31735 97.5%

15 1.55315 0.29047 98.3%
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TABLE 6

Maximum Likelihood Estimates
Using n = 25 and p = .7

Estimator
Number Mean Standard Error

Percentage of Times
Better. Than Least Squares

Least Squares 1.09879 0.28160

1 1.74903 0.91796 64.9%

2 1.56970 0.40228 69.9%

3 1.51658 0.61446 62.6%

4 1.59520 0.50276 72.1%

5 1.50493 0.55060 56.8%

6 1.54858 0.55868 72.2%

7 1.62745 0.32913 69.4%

8 1.67538 0.62468 69.0%

9 2.30126 3.42575 55.3%

10 1.53710 0.26942 78.7%

11 1.60173 0.82520 68.8%

12 1.54076 0.26216 77.6%

13 1.54411 0.28501 76.8%

14 1.62160 0.89816 67.7%

15 1.61040 0.78194 76.0%
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TABLE 7

Maximum Likelihood Estimates
Using n = 50 and p= .7

Estimator
Number Mean Standard Error

Percentage of Times
Better Than Least Squares

Least Squares 1.07564 0.18404

1 1.59831 0.35701 77.1%

2 1.53663 0.26290 81.8%

3 1.49710 0.32149 79.8%

4 154091 0.27622 82.6%

5 1.50480 0.37540 75.0%

6 1.51384 0.29097 84.6%

7 1.56004 0.20159 85.0%

8 1.61502 0.28937 78.4%

9 1.86029 0.69816 61.6%

10 1.51886 0.18349 87.8%

11 1.52707 0.27130 86.3%
a12 1.52117 0.17718 87.8%

13 1.52254 0.19391 86.9%

14 1.53406 0.27147 86.6%

15 1.53381 0.24538 88.1%
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TABLE 8

Maximum Likelihood Estimates
Using n = 100 and p = .7

Estimator
Number Mean Standard Error

Percentage of Times
Better Than Least Squares

Least Squares 1.05882 0.11967

1 1.54251 0.21049 89.4%

2 1.51260 0.17097 93.5%

3 1.49829 0.22088 92.2%

4 1.51980 0.17851 93.0%

5 1.49121 0.26691 89.3%

6 1.50696 0.19677 93.8%

7 1.52788 0.12628 95.8%

8 1.59659 0.18871 88.7%

9 1.74638 0.35558 69.8%

10 1.50877 0.12275 97.0%

11 1.51632 0.17821 95.8%

12 1.50986 0.11724 97.1%

13 1.51072 0.12821 96.9%

14 1.52053 0.17641 96.6%

15 1.51936 0.16030 96.5%

33



-31-

TABLE 9

Maximum Likelihood Estimates
Using n = 25 and p = .9

Estimator
Number Mean Standard Error

Percentage of Times
Better Than Least Squares

Least Squares 1.40986 0.20824

1 1.59323 0.25242 52.4%

2 1.56651 0.23136 54.6%

3 1.49154 0.22689 52.3%

4 1.55339 0.21167 56.3%

5 1.50040 0.45821 28.7%

6 1.53634 0.20634 59.3%

7 1.57857 0.20509 53.8%

8 1.55575 0.20939 57.1%

9 1.63639 0.29926 48.6%

10 1.53345 0.18688 60.5%

11 1.50881 0.21678 55.6%

12 1.54617 0.18711 58.0%

13 1.54838 0.19755 57.4%

14 1.52436 0.22482 57.1%

15 1.54374 0.20053 60.1%
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TABLE 10

Maximum Likelihood Estimates
Using n = 50 and P = .9

Estimator
Number Mean Standard Error

Percentage of Times
Better Than Least Squares

Least Squares 1.38100 0.13626

1 1.54664 0.16308 62.3%

2 1.53445 0.15140 64.2%

3 1.49482 0.15243 62.3%

4 1.52760 0.14528 64.7%

5 1.49769 0.31291 33.9%

6 1.51866 0.14212 66.4%

7 1.54020 0.13428 64.0%

8 1.53799 0.14339 63.7%

9 1.59003 0.19261 55.5%

10 1.51740 0.12884 67.6%

11 1.50245 0.13856 64.7%

12 1.52409 0.12758 66.3%

13 1.52523 0.13565 65.5%

14 1.50932 0.13476 65.2%

15 1.52176 0.13467 67.0%
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TABLE 11

Maximum Likelihood Estimates
Using n = 100 and p ..1: .9

Estimator
Number Mean Standard Error

Percentage of Times
Better Than Least Squares

Least Squares 1.36317 0.08547

1 1.52139 0.10001 74.1%

2 1.51463 0.09500 74.8%

3 1.49743 0.10769 75.4%

4 1.51322 0.09513 76.6%

5 1.48945 0.22639 46.4%

6 1.50909 0.09564 76.6%

7 1.51856 0.08238 75.9%

8 1.52881 0.09681 72.8%

9 1.56321 0.12001 63.5%

10 1.50804 0.08598 78.1%

11 1.50233 0.09719 77.1%

12 1.51116 0.08287 78.3%

13 1.51189 0.08852 77.5%

14 1.50674 0.09389 78.0%

15 1.51119 0.09009 77.6%
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